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ABSTRACT
The use of energy storage devices in homes has been advo-
cated as one of the main ways of saving energy and reduc-
ing the reliance on fossil fuels in the future Smart Grid.
However, if micro-storage devices are all charged at the
same time using power from the electricity grid, it means
a higher demand and, hence, requires more generation ca-
pacity, results in more carbon emissions, and, in the worst
case, breaks down the system due to over-demand. To al-
leviate such issues, in this paper, we present a novel agent-
based micro-storage management technique that allows all
(individually-owned) storage devices in the system to con-
verge to profitable, efficient behaviour. Specifically, we pro-
vide a general framework within which to analyse the Nash
equilibrium of an electricity grid and devise new agent-based
storage learning strategies that adapt to market conditions.
Taken altogether, our solution shows that, specifically, in the
UK electricity market, it is possible to achieve savings of up
to 13% on average for a consumer on his electricity bill with
a storage device of 4 kWh. Moreover, we show that there ex-
ists an equilibrium where only 38% of UK households would
own storage devices and where social welfare would be also
maximised (with an overall annual savings of nearly GBP
1.5B at that equilibrium).

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multi-agent
Systems

General Terms
Algorithms, Management, Economics

Keywords
Agent-based simulation, Smart Grid, Energy, Micro-storage

1. INTRODUCTION
Energy storage is one of the key underpinnings of the vi-
sion of the Smart Grid which aims to support sustainable
energy provisioning across the world [2, 4, 8]. Given this,
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research has been focused on designing new efficient low cost
storage devices that would be able to efficiently store elec-
tricity for long periods of time and allow a sufficient number
of charging/discharging cycles without significant degrada-
tion in performance [8].1 By using such devices, it is ex-
pected that energy usage can be improved in a number of
ways. If storage devices can be used to supply home de-
vices at peak electricity consumption times (typically in the
morning and evening), then it should be possible to lower
peak demand such that fewer carbon-intensive and expen-
sive “peaking plant” generators are required, thus reducing
both energy costs and carbon emissions. Furthermore, stor-
age devices can be used to compensate for the variability
of typical renewable electricity generation (e.g., wind, wave,
solar), thus making the integration of such generation facil-
ities into the existing grid more viable in practice [8]. Such
energy storage may even take the form of electric vehicles
(EVs) or plug-in hybrid electric vehicles (PHEVs); this vi-
sion is sometimes referred to as vehicle to grid (V2G).

There are, however, a number of potential challenges in
this setting. For example, consider individual homes (among
the 26M UK households) storing electricity according to
their own needs and all deciding to charge their batteries at
the same time (e.g. incentivised by cheaper prices). Now,
not only would this cause a higher peak in demand in the
electricity market, and hence higher carbon emissions and
more costly electricity, but, in the worst case, it could cause
blackouts and infrastructure damage if this demand were to
exceed network capacity. Moreover, if individuals were only
charging their batteries according to the amount they use,
they may be paying for electricity at a higher price than if
they did not have the device when the cost of the battery
is added to the mix. Finally, if most homes in the system
start using storage and manage to shave off peak demand,
electricity prices may become lower than the price of storing
electricity.

To address such issues, the multi-agent systems paradigm
has been advocated as both a solution and a framework
to analyse the properties of systems in which multiple self-
interested parties interact [3, 6, 9]. In particular, with the
advent of smart meters that can monitor and control de-
vices in the home, it is now possible to envisage that smart
software agents could be installed on these devices. These
agents would then be able to optimise the usage and storage
profile of the house using information from various sources
(e.g., weather data to predict energy and hence heating costs
or price plan data from suppliers). Now, most of the exist-
ing approaches to applying intelligent agents typically study

1See batteries recently developed by Ceramatec:
http://www.ceramatec.com
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how individual homes could optimise the way they store en-
ergy or how storage devices could coordinate with renewable
energy generation facilities to maximise energy used from
such sources (see Section 2 for more details). However, their
approach ignores the individual preferences of each home
and does not exactly model the real impact of agents learn-
ing to adapt to the constraints that they themselves impose
on the system. Thus, an approach that focuses on the sys-
tem dynamics where all agents in the system are given the
freedom to buy electricity whenever they see fit, would ad-
dress these issues.

In this paper we address this shortcoming and provide a
game-theoretic framework for modelling storage devices in
large-scale systems where each storage device is owned by
a self-interested agent that aims to maximise its monetary
profits. Using this framework, under certain assumptions,
we are able to predict the behaviour of the system given
that each agent behaves rationally (i.e. always adopts a
storage profile that minimises its costs) and only reacts to a
price signal. Building on this, we then go on to devise intel-
ligent agent-based storage strategies that can learn the best
storage profile given the market prices that keep changing
as a result of consumers using storage. In more detail, this
work advances the state of the art in the following ways:

1. We provide a novel game-theoretic framework to study
storage strategies that agents might adopt. Given the
normal electricity usage profile of all users in the sys-
tem, we are then able to compute the Nash equilibria
which describe when agents are going to charge their
batteries, use their stored electricity, or use electricity
from the grid.

2. We provide new agent-based micro-storage strategies
that are able to learn the best storage profile to adopt
when agents in the system may not have exactly the
same storage capacities or efficiencies. Our strategies
are shown to converge to the same Nash equilibria as
those predicted by our framework.

3. Given our agent-based learning strategies, we are able
to show how agents could learn to buy the most prof-
itable storage capacity and using evolutionary game
theoretic analysis, we are able to predict the portion
of the population that would actually acquire storage
capacity to maximise their savings.

In short, this is the first attempt at modelling, predicting
equilibria, and building intelligent strategies for the problem
of electricity storage on a large scale.

The rest of this paper is structured as follows. In Sec-
tion 2 we discuss related work in the area of electricity stor-
age and electricity markets. Section 3 discusses the key fea-
tures of the electricity markets and lays down the general
assumptions upon which we build our framework. Section 4
presents our game-theoretic framework and shows how the
Nash equilibria of the system can be computed. Building
on this, Section 5 describes the dynamics of a market where
agents are given the ability to learn their best storage profile
and, and Section 6 empirically studies this system through
simulations. Finally, Section 7 concludes.

2. BACKGROUND
Very little work exists on the application of agent-based
techniques to storage management in electricity grids. Typ-
ically, electricity storage has mainly been a concern of the

energy suppliers using large chemical batteries to store en-
ergy from intermittent renewable energy sources (e.g., wind
or solar) [7]. The effect of such large scale storage on com-
modity markets in general is a mature area of study (see [5,
11] for some state of the art energy/fuel market specific re-
sults). However, the electricity market is unusual in that
it has large daily cycles of demand, (see Figure 1 for the
average UK daily consumer load profile) which make elec-
tricity storage potentially profitable even on an individual
household scale. With the advent of new types of batteries
that charge up to 20kWh of energy a day (i.e., sufficient to
power all the devices in a house for a day), it is now possible
to envisage that micro-storage devices will be widely used.
Indeed, the energy storage requirements of a typical home
are well aligned with the storage required in a feasible EV or
PHEV. Moreover, with the advent of smart meters, it will
be possible to manage the storage and usage of electricity
within a single home using software agents residing on such
meters. Thus, decentralised autonomous agent-based ap-
proaches are strong candidates for managing energy storage
in future electricity networks. In this context, we note the
seminal work of Daryanian et al. [1] which illustrated how
individual smart meters could optimise, through iterative al-
gorithms, the storage profile of a house. Their approach was,
however, limited to considering very basic battery properties
and did not consider wider issues for the grid. In the same
vein, more recently, [6] provide algorithms for agents to op-
timise storage using CHPs (Combined Heat and Power) but
ignore how populations of such agents would impact on the
grid. On the other hand, [3, 9] have studied the application
of storage devices on a wider scale. They show that using
demand-side management (i.e., directly controlling the stor-
age profile of a number of homes) coupled with storage can
increase savings made in the system.

If not properly managed, storage systems can be unprof-
itable [8], so in the setting we consider, it is important to
know whether small scale storage can be individually bene-
ficial, and what strategies maximise this profit. It is also im-
portant to understand the system-wide effects of such strate-
gies, in particular, quantifying the limits on the usefulness
of small scale storage from a social welfare point of view.
These are the key open questions that are addressed by this
paper.

Figure 1: Representative Load Profile in UK (the
Domestic Unconstrained profile).

3. MODEL DESCRIPTION
This section describes the models used in this paper. Our
analysis considers fixed time interval consisting of single
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days, each separated into 𝑇 = 48 settlement periods of
half an hour. Each day, agents consume electricity which is
bought from suppliers through an electricity market. This
market operates for each time interval in the day, so that
variations in demand over time can be met. We proceed
with a description of our models of behaviour for the agents,
followed by a description of the market and a definition of
the relevant social welfare metrics we consider.

3.1 Agents
We consider a set of consumers 𝒜 which we define as selfish
agents that always aim to minimise their individual costs.
Each agent 𝑎 ∈ 𝒜 has a load profile ℓ𝑎𝑖 ∀𝑖 ∈ ℐ = {1, ..., 𝑇},
such that ℓ𝑎𝑖 is the amount of electricity required by agent
𝑎 for time interval 𝑖 during each day. The aggregate load
profile of the system is given by

∑
𝑎∈𝒜 ℓ𝑎𝑖 = 𝑑𝑖. We consider

this load profile to be fixed over different days (although
there are seasonal variations in demand in practice, there is a
high degree of consistency from day to day). Each agent 𝑎 ∈
𝒜 may also have some storage available to it, with capacity
𝑒𝑎, efficiency 𝛼𝑎 and running costs 𝑐𝑎. Here, the cost 𝑐𝑎 may
represent ongoing storage costs (for example, some battery
devices expend energy through heating while they are in
use) or may incorporate a fixed capital investment by 𝑎, to
be paid off over time. The storage efficiency 𝛼𝑎 and cost 𝑐𝑎

are modelled to be such that if 𝑞 amount of energy is stored,
then 𝛼𝑎𝑞 may be discharged and the storage cost is 𝑐𝑎𝑞.

In order to minimise costs, 𝑎 can attempt to strategise
over its storage profile, 𝑏𝑎𝑖 ∀𝑖 ∈ ℐ where −𝑏𝑎− ≤ 𝑏𝑎𝑖 ≤ 𝑏𝑎+,
where 𝑏𝑎− is the discharging capacity of the storage, and 𝑏𝑎+,
the charging capacity. For all 𝑖 ∈ ℐ we have 𝑏𝑎𝑖 = 𝑏𝑎+𝑖 − 𝑏𝑎−𝑖 ,
where 𝑏𝑎+𝑖 is the charging profile and 𝑏𝑎−𝑖 , the discharging
profile. Since we are attempting to model the effect of the
widespread adoption of small scale houshold storage devices,
we can assume that ℓ𝑎𝑖 , 𝑏𝑎+, and 𝑏𝑎− are small in comparison
to 𝑑𝑖. We denote the total storage capacity as 𝑒 =

∑
𝑎∈𝒜 𝑒𝑎,

and the net storage profile as 𝑏𝑖 ∀𝑖 ∈ ℐ where 𝑏𝑖 =
∑

𝑎∈𝒜 𝑏𝑎𝑖 .
The net charging and discharging capacities are defined as
𝑏+ =

∑
𝑎∈𝒜 𝑏𝑎+ and 𝑏− =

∑
𝑎∈𝒜 𝑏𝑎−. To supply its load

profile and energy charging needs each agent much purchase
electricity from the available market. The next subsection
contains our market model.

3.2 The Electricity Market
We consider a macro-model of the electricity market; a black
box that abstracts the market mechanism and trading, as
well as transmission power flow security involved in an actual
electricity market mechanism. Given the characteristics of
the market, our model gives us the market prices based on
the economics of demand and supply (see Figure 2). The
supply curve in this case is generated from UK National
Grid prices for the period of August and September 2009.

The behaviour of electricity suppliers is specified by the
supply curve 𝑠𝑖(⋅) for every time point 𝑖 ∈ ℐ. The supply
curve 𝑠𝑖(⋅) indicates the cost of electricity that generators ex-
perience, or minimum price they are willing to sell at, when
producing a certain quantity. For our model we assume that
𝑠𝑖(⋅) is continuous and strictly increasing. As defined above,
each time interval 𝑖 ∈ ℐ has an inelastic demand2 quantity
𝑑𝑖, representing the total amount of electricity consumed by
agents, and a net storage effect, 𝑏𝑖, representing the aggre-
gated effect of storage. Thus, the total amount of electricity
bought from suppliers at time interval 𝑖 ∈ ℐ is 𝑞𝑖 = 𝑑𝑖 + 𝑏𝑖.

2The market demand is modelled as inelastic to reflect the
currently inelastic demand of individual consumers.

Under our model, for each time interval 𝑖 ∈ ℐ, the mar-
ket sets a price for electricity 𝑝𝑖 = 𝑠𝑖(𝑞𝑖). Each agent pays
𝑝𝑖(ℓ

𝑎
𝑖 + 𝑏𝑎𝑖 ) and the total cost for all agents is 𝑝𝑖𝑞𝑖.

Figure 2: Supply is modelled from actual UKmarket
prices and demand is assumed to be inelastic.

3.3 Social Welfare Metrics
A key aim of this paper is to study the effect of storage
on the system and whether the global social welfare of the
system improves as agents adopt storage. In more detail, we
measure social welfare by considering the following standard
metrics of an electricity market:

∙ Diversity factor (DF) is the ratio of the sum of the
individual maximum demands of various consumers of
the system to the maximum demand of the complete
system. The diversity factor is usually greater than 1.

∙ The Load Factor (LF) is the average power divided by
peak power, over a period of time and, ideally, is 1. A
low LF suggests peak demands in the system.

∙ The Grid Carbon Content intensity is the carbon pro-
duced to generate the required electricity. It is ex-
pressed as 𝑔 of 𝐶𝑂2 per 𝑘𝑊ℎ and, is ideally as low as
possible. The carbon emission from electricity gener-
ation in the UK is given in Figure 3 and is calculated
from the generation supply mix from the UK National
Grid for the period of August and September 2009.

4. A GAME-THEORETIC ANALYSIS
In this section we analyse the models given above from a
game-theoretic point of view. For tractability we assume
that agents have homogeneous efficiency and running costs,
that is 𝛼𝑎 = 𝛼 and 𝑐𝑎 = 𝑐 for all 𝑎 ∈ 𝒜 for some 𝛼 and 𝑐.

Formally, the game we consider has players which coincide
with our agents, 𝑎 ∈ 𝒜, and the game describes the outcome
of a single 24 hour interval. The pay-off an agent receives is
equal to minus the total costs that agent experiences when
purchasing electricity that day, −∑

𝑖∈ℐ 𝑝𝑖(ℓ
𝑎
𝑖 + 𝑏𝑎𝑖 ). The

strategy space available to each agent is the set of feasible
storage profiles, 𝑏𝑎𝑖 ∀𝑖 ∈ ℐ where −𝑏𝑎− ≤ 𝑏𝑎𝑖 ≤ 𝑏𝑎+. Here we
also make two further restrictions on feasible storage pro-
files. Firstly, for all 𝑎 ∈ 𝒜 we require that the amount of
energy discharged is equal to the amount of energy charged
multiplied by the efficiency, that is

∑
𝑖∈ℐ 𝑏𝑎−𝑖 =

∑
𝑖∈ℐ 𝛼𝑏𝑎+𝑖 .

Secondly, for all 𝑎 ∈ 𝒜, we require that
∑

𝑖∈ℐ 𝑏𝑎+𝑖 ≤ 𝑒𝑎,
that is the total amount charged is less than the storage ca-
pacity. This is a stricter constraint than simply requiring
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Figure 3: UK Carbon emission from Electricity Gen-
eration.
that the capacity is never exceeded at any time. However,
it is a reasonable gauge of storage capacity limitations for a
day-long time period, where demand typically goes through
a single cycle of low to high to low, implying that storage
devices would go through a corresponding cycle of charging
to discharging to charging. We now proceed to characterise
the deterministic Nash equilibria for this game.

4.1 Nash Equilibria as Global Optimisers
Suppose agents have chosen some strategy profiles, and let
us consider the effect of a feasible change in strategy for one
agent. That is, some 𝑎 ∈ 𝒜 considers going from 𝑏𝑎𝑖 ∀𝑖 ∈ ℐ
to 𝑏𝑎𝑖 +Δ𝑏𝑖 ∀𝑖 ∈ ℐ, for some values Δ𝑏. The change in payoff
for agent 𝑎 would be:∑

𝑖∈ℐ

(
(𝑠𝑖(𝑞𝑖) − 𝑠𝑖(𝑞𝑖 + Δ𝑏𝑖)

)
(ℓ𝑎𝑖 + 𝑏𝑎𝑖 ) − 𝑠𝑖(𝑞𝑖 + Δ𝑏𝑖)Δ𝑏𝑖.

As noted in the previous section, since we are examining
widespread micro-storage devices, we can assume that for
all 𝑖 ∈ ℐ and 𝑎 ∈ 𝒜, ℓ𝑎𝑖 , 𝑏+, and 𝑏− are small in comparison
to 𝑑𝑖 and 𝑞𝑖. This means that the (ℓ𝑎𝑖 +𝑏𝑎𝑖 ) term in the above
will be small, and 𝑠𝑖(𝑞𝑖 + Δ𝑏𝑖) will be close to 𝑠𝑖(𝑞𝑖). Using
these approximations, the deterministic Nash equilibria for
this game correspond to strategy profiles which minimise∑

𝑖∈ℐ
∫ 𝑞𝑖
0

𝑠𝑖(𝑥)𝑑𝑥.
These approximations reduce our search for the Nash equi-

librium of a complex multi-player game to a relatively straight-
forward global optimisation problem — that of minimising
global generators costs. We now proceed to find solutions
to this optimisation problem.

4.2 Characterisation of Nash Equilibria
We seek to find an aggregate storage profile 𝑏𝑖 ∀𝑖 ∈ ℐ with
−𝑏− ≤ 𝑏𝑖 ≤ 𝑏+,

∑
𝑖∈ℐ(𝑏𝑖)

+ ≤ 𝑒, and
∑

𝑖∈ℐ 𝛼(𝑏𝑖)
+ =

∑
𝑖∈ℐ(𝑏𝑖)

−,

which minimises
∑

𝑖∈ℐ
∫ 𝑑𝑖+𝑏𝑖
0

𝑠𝑖(𝑥)𝑑𝑥. Here, and through-

out the paper, we use the notation (⋅)+ to denote positive
part, i.e. 𝑦 = (𝑥)+ means 𝑦 = 𝑥 if 𝑥 > 0, 𝑦 = 0 otherwise.
Likewise we use (𝑥)− to denote (−𝑥)+.

We begin with a definition.

Definition 1. For a storage system as described, we de-
fine the discharging price point, 𝑝𝑑, to be the maximum of
the solution to

∑
𝑖∈ℐ 𝑞𝑑𝑖 (𝑝

𝑑) = 𝛼
∑

𝑖∈ℐ 𝑞𝑐𝑖 (𝛼𝑝𝑑 − 𝑐), and the

solution to
∑

𝑖∈ℐ 𝑞𝑑𝑖 (𝑝
𝑑) = 𝛼𝑒, if one exists.

Here we define, for each interval 𝑖, 𝑞𝑑𝑖 (𝑝) = max
(
𝑏−, (𝑑𝑖 −

𝑠−1
𝑖 (𝑝))−

)
, and 𝑞𝑐𝑖 (𝑝) = min

(
𝑏+, (𝑑𝑖 − 𝑠−1

𝑖 (𝑝))+
)
.

We define the charging price point, 𝑝𝑐, to be the minimum
of 𝛼𝑝𝑑 − 𝑐 and the solution to

∑
𝑖∈ℐ 𝑞𝑐𝑖 (𝑝

𝑐) = 𝑒 if one exists.

This definition is well defined by the Lemma 1 in the Ap-
pendix. We can now state the main result of this analysis.

Theorem 1. For a storage system as described, the set
of Nash equilibria for the system is precisely the set of agent
strategies where, for all 𝑖 ∈ ℐ, 𝑏𝑖 = 𝑞𝑑𝑖 (𝑝

𝑑) − 𝑞𝑐𝑖 (𝑝
𝑐).

Proof. See the Appendix.

4.3 Idealised Scenarios
For special idealised scenarios, we have the following two

corollaries.

Corollary 1. If 𝑏+ and 𝑏− are sufficiently large, then
for all 𝑖, 𝑝𝑐 ≤ 𝑠𝑖(𝑞𝑖) ≤ 𝑝𝑑. Furthermore, if for any 𝑖 ∈ ℐ,
𝑝𝑐 < 𝑝𝑖 < 𝑝𝑑, then 𝑏𝑖 = 0.

Proof. If, for all 𝑎 ∈ 𝒜 we let 𝑏𝑎+ and 𝑏𝑎− be equal to 𝑒𝑎,
then this does not break our smallness assumption, and,
furthermore, for all 𝑖 ∈ ℐ, we’ll have 𝑞𝑑𝑖 (𝑝

𝑑) < 𝑏− and
𝑞𝑐𝑖 (𝑝

𝑐) < 𝑏+. Thus, for all 𝑖, if 𝑏𝑖 is non zero then either
𝑏𝑖 = 𝑞𝑑𝑖 (𝑝

𝑑) = 𝑠−1
𝑖 (𝑝𝑑) − 𝑑𝑖 < 0, in which case 𝑞𝑖 = 𝑠−1

𝑖 (𝑝𝑑)

and so 𝑝𝑖 = 𝑝𝑑, or else 𝑏𝑖 = 𝑞𝑑𝑖 (𝑝
𝑑) = 𝑠−1

𝑖 (𝑝𝑐) − 𝑑𝑖 > 0,
in which case 𝑞𝑖 = 𝑠−1

𝑖 (𝑝𝑐) and so 𝑝𝑖 = 𝑝𝑐. If 𝑏𝑖 = 0 then

𝑠−1
𝑖 (𝑝𝑐) ≤ 𝑑𝑖 ≤ 𝑠−1

𝑖 (𝑝𝑑) and so 𝑝𝑐 < 𝑝𝑖 < 𝑝𝑑 as required.

So, if the charge and discharge rates are sufficiently high,
then we could expect prices to always lie within 𝑝𝑐 and 𝑝𝑑.

Corollary 2. If 𝑏+ and 𝑏− are sufficiently large, capac-
ity 𝑒 is sufficiently high, 𝑐 = 0 and 𝛼 = 1, then for all 𝑖,
𝑝𝑐 = 𝑠𝑖(𝑞𝑖) = 𝑝𝑑.

Proof. This follows directly from the previous corollary.

Hence, in an idealised scenario, with perfectly efficient,
cost free, and high capacity storage, we would expect the
market prices over time to flatten to a single value. This
is because perfect storage capability would allow agents to
transport energy from any time interval to any other time
interval free of charge. Thus, different suppliers in differ-
ent time intervals would have to compete with each other,
resulting in convergence to a single market price.

4.4 Rationality Assumption
Theorem 1 gives the aggregate storage behaviour when our
game is in a deterministic Nash equilibrium. We can use
this result to specify limits of the social welfare benefit that
can result from adopting small-scale storage. If the actions
of such selfish agents are to result in stable aggregate be-
haviour, then we can do no better than the outcome de-
scribed above.

However, in using game theory, we have made some im-
plicit assumptions, specifically that agents are rational and
have complete information about the market throughout the
time period. In reality, information available to those own-
ing storage devices will not be perfect. Furthermore, even
with perfect information, it might not be apparent to an au-
tomated agent which strategies are preferable. Instead, the
agents themselves must adapt over time, to become aware
of the repeating daily patterns of supply and demand, and
learn which storage strategies are preferable. This is a dif-
ficult problem and it is not guaranteed that selfish learning
behaviour can converge. For example, if agents over-react to
perceived opportunities in the market, cycles of price fluc-
tuations could develop.

In the next section, we provide a novel adaptive storage
strategy for agents to maximise their savings. Under this
scheme, agents change their storage profiles each day to be
closer to their perceived optimal strategy. In Section 6 we
show that provided the adaptation is not too fast, it results
in the aggregate convergence predicted by Theorem 1.
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5. AN ADAPTIVE STORAGE STRATEGY
As discussed above, the next step of our work is to design
a novel adaptive storage strategy that an agent can use to
decide on when to store energy and when to use the stored
energy. Now, because market prices are continuously chang-
ing as a result of changing demand (due to consumers us-
ing storage devices), we design a learning mechanism that
adapts to these changing market prices.

In more detail, our strategy is based on a day-ahead best-
response storage. Because the market prices are unknown a
priori, we can only calculate the storage profile on a day-
ahead basis, as a best-response to the predicted market
prices. To mitigate prediction errors, the consumer grad-
ually adapts her storage towards the best-response storage.
In this section, we first describe how we calculate the day-
ahead best response storage profile and, second, we describe
our learning mechanism, that is, how the consumer adapts
her storage.

5.1 The Day-Ahead Best-Response Storage
The objective of an agent 𝑎 is to minimise its costs by
storing energy when prices are low and using that energy
when prices are high. Now, because market prices are un-
known until the aggregated load of all consumers, 𝑠𝑖, where∑

𝑎∈𝒜 ℓ𝑎𝑖 = 𝑠𝑖, is known, the agent needs to decide on its
storage profiles based on the predicted market prices of the
following day. Note that in our work, we assume that market
prices do not move significantly over days and use a weighted
moving average to predict future market prices.3

We compute the storage profile, 𝑏𝑎 = 𝑏𝑎+ − 𝑏𝑎− at every
time-slot during the day as the solution to an optimisation
problem where we minimise the following cost function4:

argmin
𝑏𝑎

(∑
𝑖∈ℐ

𝑝𝑖(𝑏
𝑎+
𝑖 − 𝑏𝑎−𝑖 + ℓ𝑎𝑖 ) + 𝑐𝑎𝑒𝑎

)
(1)

subject to the following constraints:

Contraint 1: storage efficiency∑
𝑖∈ℐ

𝑏𝑎−𝑖 = 𝛼𝑎𝑏𝑎+𝑖 ∀𝑖 ∈ ℐ

Contraint 2: within charging and discharging capacity

𝑏𝑎−𝑖 ≤ 𝑏𝑎− 𝑎𝑛𝑑 𝑏𝑎+𝑖 ≤ 𝑏𝑎+ ∀𝑖 ∈ ℐ
Contraint 3: energy that can be stored or used at a time-slot

𝑏𝑎− ≤ 𝛼𝑎
(
𝑒𝑎0 +

∑𝑖−1
𝑗=1

(
𝑏𝑎+𝑗 − 𝑏𝑎−𝑗

))
, ∀𝑖 ∈ ℐ

𝑏𝑎+ ≤ 𝑒𝑎 − 𝑒𝑎0 +
∑𝑖−1

𝑗=1

(
𝑏𝑎+𝑗 − 𝑏𝑎−𝑗

)
, ∀𝑖 ∈ ℐ

Contraint 4: no-reselling allowed

ℓ𝑎𝑖 − 𝑏𝑎−𝑖 ≥ 0 , ∀𝑖 ∈ ℐ
The last constraint can be removed in a system where con-
sumers are allowed to sell power to the grid and that 𝑒𝑎 can
be fixed or unconstrained. In line with our model (see Sec-
tion 3), 𝑐𝑎 is the relatively small discounted running cost of
using storage, 𝑒𝑎 is the storage capacity. 𝛼𝑎 is the efficiency
of the agent’s storage, 𝑏𝑎+ is its maximum charging and 𝑏𝑎−
3As we will demonstrate later on, this is not very sensitive in
our work as the price movements are generally small. How-
ever, a number of more sophisticated prediction algorithms,
such as Gaussian Processes could be used instead.
4We used IBM ILOG CPLEX 9.1 to implement and solve
the optimisation problem.

its maximum discharging rates and 𝑒𝑎0 is the storage at the
beginning of the day which equals the storage at the end of
the day (i.e., charging at the end of a day for the next day).

Because market prices move over trading days, the agent
needs to continuously adapt its storage profile to reflect these
changes. Now, because of the relatively high cost of storage,
it is more sensible and realistic for the agent to gradually
change its capacity by analysing the trend of market prices.
To this end, we develop a novel learning mechanism to adapt
storage profiles in an electricity market.

5.2 Learning in the Market
Our learning mechanism is based on a two-pass approach.
Initially, the agent computes the maximum storage capacity,
𝑒𝑎∗𝑈 it would require to minimise its costs. 𝑒𝑎∗𝑈 is the cost-
minimising capacity by optimising over 𝑒𝑎 (see Equation 1).

Now, 𝑒𝑎∗𝑈 constitutes a desired capacity towards which the
agent learns its storage capacity, i.e. it adapts its storage
capacity progressively to follow the changing market trends.
The storage capacity of the agent is defined by Equation 2 as
𝑒𝑎(𝑡) that follows the desired unconstrained storage capacity
𝑒𝑎∗𝑈 such that:

𝑒𝑎(𝑡 + 1) = 𝑒𝑎(𝑡) + 𝛽1(𝑒
𝑎∗
𝑈 − 𝑒𝑎(𝑡)) ∀𝑖 ∈ ℐ (2)

where 𝑒𝑎(0) = 0 by default and 𝛽1 is the learning rate5 of
the storage capacity of agent 𝑎. Given its storage capacity,
the agent then computes its optimal storage profile for the
following day by fixing 𝑒𝑎 at 𝑒𝑎(𝑡 + 1) in Equation 1.

On the second pass, given its current storage profile, the
agent adapts its storage profile (to mitigate any risk of hav-
ing poorly predicted market prices) as follows:

𝑏𝑎𝑖 (𝑡 + 1) = 𝑏𝑎𝑖 (𝑡) + 𝛽2(𝑏
𝑎∗
𝑖 − 𝑏𝑎𝑖 (𝑡)) ∀𝑖 ∈ ℐ (3)

where 𝑏𝑎∗ is the desired storage profile given as the optimal
storage profile subject to a fixed storage capacity of 𝑒𝑎(𝑡 +
1) and 𝛽2 is the learning rate of the storage profile. Note
that we analyse in more detail the sensitivity of the learning
parameters as part of the empirical study of the system in
the next section.

6. AN EMPIRICAL ANALYSIS OF THE UK
MARKET

In this section, we empirically analyse the effect of storage on
the UK market. To this end, given our macro-model of the
UK market, we setup individual consumers with typical UK
load profiles,6 different learning rates and different storage
types. Learning rates, as are charging and discharging ca-
pacities, are uniformly distributed7 (to represent consumers
with different learning attitudes and storage types) around
means that are based on current technologies (see Section
2). Now, because our macro-model is general enough, our
framework can be applied to any electricity market around
the world, and our results and insights broadly generalise.

Given this setup, we first provide a game-theoretic solu-
tion, identifying the Nash equilibrium of the system and,
second, we provide a dynamic analysis as to whether or not

5As we will empirically demonstrate further on, the choice
of the learning rates determines the evolutionary stability of
the system and has to be reasonably small.
6We do so by adding random noise to the average UK load
profile; on the timings using Poisson distribution of demand
times and a uniform distribution of noise over demanded
quantities.
7In all experiments except for when we analyse the effect of
learning rates, we use a mean value of 0.05.
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Figure 4: Nash equilibrium (with a storage capacity
of 3.55 kWh).

Figure 5: Convergence of the average strategy pro-
file to the Nash equilibrium.

such an equilibrium can be reached if a proportion of the
population were to acquire storage devices as well as use
our adaptive storage strategy with the aim of maximising
their individual savings. Finally, we analyse how the social
welfare of the system evolves with a large number of agents
adapting their storage and whether the social welfare of the
market improves while consumers are able to make a saving.

6.1 A Game-Theoretic Solution
Given the game-theoretic framework outlined in Section 4,
we first calculate the Nash equilibrium given a typical do-
mestic average unconstrained profile (see Figure 4). It is
clear that equilibrium behaviour for a consumer is to charge
at off-peak hours (at night) and use the stored energy during
peak hours (after working hours) when the consumers’ load
is highest.

6.2 Evaluation of the Adaptive Storage
Given the adaptive storage strategy we designed in the pa-
per, we now analyse how the system evolves as agents are
changing their behaviours within a realistic setting and whet-
her the system converges to the Nash equilibrium. As we can
see from Figures 4 and 5, our average storage profile indeed
converges to the Nash Equilibrium of our game-theoretic
analysis. Figure 6 shows how the average storage profile
evolved towards an equilibrium as market prices were flat-
tened in the system (see Figure 7).

Given these results (i.e., that we converge to the Nash
Equilibrium and hence the optimal solution — see Section
4), we can claim our adaptive strategy sets the benchmark
for any learning strategy in this system! Now, it is also

Figure 6: Average Storage Profile converging to
Nash Equilibrium.

Figure 7: Changing Market Prices (market prices
eventually flatten).

important to analyse how the social welfare of the system
evolves as the system is evolving to the Nash equilibrium to
ensure that agents adopting storage does not break the sys-
tem (i.e. social welfare does not decrease). To this end, we
analyse the market diversity factor, load factor and carbon
content reduction (see Section 3).

For the system efficiency given in Figure 8, we considered
a population with around 38% with storage capability (our
choice of 38% will become clearer further on). As can be
clearly observed, the system efficiency improves and gradu-
ally converges as agents adapt their storage profiles and mar-
ket prices are flattened. In more details, the average max-
imum storage capacity required converges to around 3.55
kWh after several trading days while the market load factor
converges to around 0.94 where the load in the market is
nearly flattened. Furthermore, the diversity factor increases
suggesting that, because of storage, consumers now have less
correlated demand requirements from the electricity market
(which generally reduces peaks in a system).

A significant benefit of storage at a micro-level is that if a
sufficient proportion of the population does adopt storage,
the carbon intensity of electricity market would decrease ap-
preciably as peak demands are reduced. Indeed, in Figure
9, we show how the carbon content is reduced by up to 7%
for different proportions of population adopting storage (by
extrapolating our results to the 26M UK households).

Furthermore, from Figure 10, it is clear that there is a
financial incentive for consumers to adopt storage, with a
maximum saving of around 13% (based on the current sys-
tem with no storage). As expected, because storage flattens
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Figure 8: Social Welfare of System.

Figure 9: Social welfare for different proportion of
the population using storage.

the market prices, other consumers, even without storage,
also indirectly benefit. Now, as storage becomes more and
more popular (as consumers become aware that they can
save on their electricity bills), we observe a decrease in their
savings, reaching a point where a consumer can save more
by not having storage than having storage (see average sav-
ings in Figure 10). In the next subsection, we analyse in
more detail this social trend.

6.3 When to Adopt Storage
Here, we formulate the problem as a game where agents have
a mixed strategy 𝑥𝑟 ∈ (0, 1), i.e. a probability that they
have storage capability and are only motivated by financial
gains. By analysing how 𝑥𝑟 evolves as the payoffs change
for different 𝑥𝑟, we want to study how the proportion of the
population using storage evolves. To this end, we use the
classical evolutionary game-theory (EGT) [10] based on the
following equations:

𝑥𝑟 = [𝑢(𝑒𝑟, 𝑥)−𝑢(𝑥, 𝑥)]𝑥𝑟 where 𝑢(𝑥, 𝑥) =
∑

𝑟∈𝑆 𝑢(𝑒𝑟, 𝑥)𝑥𝑟

𝑥𝑛𝑎𝑠ℎ = argmin𝑥∈(0,1)

∑
𝑆(max[𝑢(𝑒𝑗 , 𝑥) − 𝑢(𝑥, 𝑥), 0])2

First, we compute a heuristic payoff table (based on simu-
lations) to calculate the payoffs for using and not using stor-
age for different 𝑥𝑟. The replicator dynamics 𝑥𝑟 describes
the dynamics of the population, i.e. how 𝑥𝑟 is evolving, and,
whether it converges to any Nash Equilibrium 𝑥𝑛𝑎𝑠ℎ.

Figure 10 shows our EGT analysis, with 𝑥𝑛𝑎𝑠ℎ at 0.382
adopting storage, and the replicator dynamics all converging
towards that equilibrium. Surprisingly enough, this means
that the population will gradually settle at an equilibrium
where only 38% of the population use storage. At that equi-
librium, all consumers make an average savings of 8.54%

Figure 10: Savings with and without storage. Repli-
cator dynamics (arrows on the x-axis) converge to
the Nash Equilibrium at 0.382 with a saving of 8.5%
for using and not using storage.

(i.e. an annual saving of GBP60 per household – based on
an average annual electricity bill of GBP675). Now, the
equilibrium suggests that too many consumers storing can
be counterproductive for the system. This is because there is
a point beyond which additional storage adds more volatil-
ity to already flattened market prices (seen from a decrease
in the load factor in Figure 8), and those agents that store
are more exposed to this volatility. Finally, around the equi-
librium point, we also observe that the social welfare of the
system peaks such that the individual goals of the agents
(to save on the electricity bills) is well aligned with max-
imisation of the social welfare, with the diversity factor DF
decreasing as too many households start storing energy.

6.4 Sensitivity of the Learning Mechanism
Finally, we analyse the sensitivity of the learning mechanism
against the social welfare and the agent’s self-interested ob-
jectives. Figure 11 shows, as expected, that the smaller the
learning rate, the more efficient the system (with a higher
load factor) and the better the average savings of the in-
dividual agents. Now, because an infinitely small learning
rate is infeasible as it implies an infinitely long time to reach
the equilibrium, a trade-off is required. Specifically, because
the learning parameters are not very sensitive when they
are small, a value of 0.05 to 0.20 would be reasonable. A
high learning rate, on the other hand, would result in agents
adopting their optimal storage profile immediately rather
than adapting gradually, which clearly results in poor sav-
ings and poor system efficiency. Finally, there is no con-
vergence, implied by the load factor dropping below 0.7 –
without any storage – to 0.59 such that there are now more
peaks in the system (as everyone is charging at the same
time).

7. CONCLUSIONS
In this paper, we developed a framework to analyse agent-
based micro-storage management for the smart grid. Specifi-
cally, we designed a storage strategy (with an adaptive mech-
anism based on predicted market prices) for consumers and
empirically demonstrated that the average storage profile
converges towards a Nash equilbrium. At that point, peak
demands are reduced, reducing the requirements for more
costly and carbon-intensive generation plant. Moreover, in
our analysis of the social welfare at this equilibrium we show
that, while being stable, it results in reduced costs and car-
bon emissions. This also shows that the objective of buying
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Figure 11: The effect of the learning rate.

storage to save on electricity bills is aligned with maximising
social welfare. Finally, we show that the population would
adopt storage until an equilibrium of 38% is reached, around
which the social welfare is maximised.

For future work, we intend to integrate a more accurate
model of the electricity market mechanism in our work as
well as models of deferrable loads and how an agent can
control such loads in parallel with its storage for more ef-
ficient cost-saving behaviours. Furthermore, we would like
to explore how consumers with preferences for low carbon
electricity, not just low cost electricity, could interact within
this model.
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Appendix
This appendix contains the lemmas and proofs left out of the
main body of the paper. We begin with a lemma which jus-
tifies the definition of charging and discharging price points
given in Section 4.

Lemma 1. There always exists a solution to,
∑

𝑖∈ℐ 𝑞𝑑𝑖 (𝑝) =
𝛼
∑

𝑖∈ℐ 𝑞𝑐𝑖 (𝛼𝑝 − 𝑐). Furthermore, if 𝑝 is the solution then

𝑝𝑑 = 𝑝 and 𝑝𝑐 = 𝛼𝑝 − 𝑐 unless
∑

𝑖∈ℐ 𝑞𝑑𝑖 (𝑝) > 𝛼𝑒, in which

case, 𝑝𝑑 is the solution to
∑

𝑖∈ℐ 𝑞𝑑𝑖 (𝑝
𝑑) = 𝛼𝑒, and 𝑝𝑐 is the

solution to
∑

𝑖∈ℐ 𝑞𝑐𝑖 (𝑝
𝑐) = 𝑒.

Proof. If 𝑝 is sufficiently small then for all 𝑖 ∈ ℐ we will
have 𝑠−1

𝑖 (𝑝) < 𝑑𝑖 and hence 𝑞𝑑𝑖 (𝑝) will be strictly positive
and, since 𝛼𝑝 − 𝑐 < 𝑝, 𝑞𝑐𝑖 (𝛼𝑝 − 𝑐) will be zero. Likewise if 𝑝
is sufficiently large then for all 𝑖 ∈ ℐ we will have 𝑠−1

𝑖 (𝑝) >

𝑑𝑖 and so 𝑞𝑐𝑖 (𝑝) will be strictly positive and 𝑞𝑑𝑖 ((𝑝 + 𝑐)/𝛼)
will be zero. Since the functions 𝑞𝑑𝑖 (⋅) are decreasing for
all 𝑖 and 𝑞𝑐𝑖 (⋅) are increasing for all 𝑖, we can conclude that∑

𝑖∈ℐ 𝑞𝑑𝑖 (𝑝
𝑑)−𝛼

∑
𝑖∈ℐ 𝑞𝑐𝑖 (𝛼𝑝𝑑−𝑐) is a continuous decreasing

function in 𝑝 which is negative for sufficiently small 𝑝 and
positive for sufficiently large 𝑝. This implies the existence of
some solution 𝑝 such that

∑
𝑖∈ℐ 𝑞𝑑𝑖 (𝑝) = 𝛼

∑
𝑖∈ℐ 𝑞𝑐𝑖 (𝛼𝑝− 𝑐).

Now if
∑𝑛

𝑖=1 𝑞𝑑𝑖 (𝑝) ≤ 𝛼𝑒 then 𝑝𝑑 = 𝑝 and
∑

𝑖∈ℐ 𝑞𝑐𝑖 (𝛼𝑝 −
𝑐) ≤ 𝑒, hence 𝑝𝑐 = 𝛼𝑝 − 𝑐. If

∑𝑛
𝑖=1 𝑞𝑑𝑖 (𝑝) > 𝛼𝑒 then, since

we know that
∑𝑛

𝑖=1 𝑞𝑑𝑖 (𝑝) = 0 for large enough 𝑝, there must

exist some 𝑝 ≥ 𝑝 such that
∑𝑛

𝑖=1 𝑞𝑑𝑖 (𝑝) = 𝛼𝑒. By definition,

𝑝𝑑 must be equal to this 𝑝. Similarly, since
∑

𝑖∈ℐ 𝑞𝑐𝑖 (𝛼𝑝−𝑐) >
𝑒, we can deduce that 𝑝𝑐 ≤ 𝛼𝑝 − 𝑐 and

∑𝑛
𝑖=1 𝑞𝑐𝑖 (𝑝

𝑐) = 𝑒, as
required.

We now prove Theorem 1 from Section 4.

Proof Theorem 1. We seek to find an aggregate stor-
age profile 𝑏 = {𝑏𝑖}𝑖∈ℐ which minimises 𝑓(𝑏) where 𝑓(𝑏) =∑

𝑖∈ℐ
∫ 𝑑𝑖+𝑏𝑖
0

𝑠𝑖(𝑥)𝑑𝑥. If, for all 𝑖 ∈ ℐ we extend the defini-
tion of 𝑠𝑖(𝑥) to be 0 for negative 𝑥, then we can see that 𝑓(⋅)
tends to infinity as for large feasible 𝑏. Thus, 𝑓(⋅) must have
at least one local minimum over the feasible domain, one of
which has to be the global minimum. To do find these allo-
cations we seek feasible 𝑏 for which the derivative of 𝑓(𝑏) is
non-negative in every direction that leads to another feasible
allocation. The gradient of 𝑓(𝑏) is {𝑝𝑖}𝑖∈ℐ , thus it remains
to characterise all 𝑏 such that

∑
𝑖∈ℐ 𝑝𝑖Δ𝑏𝑖 ≥ 0 for every Δ𝑏

where 𝑏 + Δ𝑏 is feasible.
Now suppose we have some 𝑏 which locally maximises 𝑓(⋅).

If there is 𝑖, 𝑗 with 𝑏+ > 𝑏𝑖 > 0 and 𝑏+ > 𝑏𝑗 > 0, then it
would be feasible to increase 𝑏𝑖 and decrease 𝑏𝑗 by an equal
quantity, (or vice versa), hence we must have 𝑝𝑖 = 𝑝𝑗 . From
this we can deduce that if for some 𝑖, 𝑗, 𝑝𝑖 < 𝑝𝑗 , 𝑏𝑖 > 0
and 𝑏𝑗 > 0, then we must have 𝑏𝑖 = 𝑏+. This means that
there will be some price, 𝑝𝑐 such that if 𝑏𝑖 > 0, for any 𝑖,
then 𝑝𝑖 ≤ 𝑝𝑐, with equality if 𝑏𝑖 < 𝑏+. Similarly, we can
show that there will be some price 𝑝𝑑 such that if 𝑏𝑖 < 0
for 𝑖, then 𝑝𝑖 ≥ 𝑝𝑑, with equality if 𝑏𝑖 > −𝑏−. Furthermore,
there cannot be 𝑖, 𝑗 such that 𝑝𝑖 + 𝑐 > 𝛼𝑝𝑗 and 𝑏𝑖 > 0 and
𝑏𝑗 < 0, for then it would be feasible to decrease 𝑏𝑖 by some
Δ𝑏𝑖 and increase 𝑏𝑗 by Δ𝑏𝑗 = 𝛼Δ𝑏𝑖. Hence, we must have
𝑝𝑐+𝑐 ≤ 𝛼𝑝𝑑. This implies that for all 𝑖, 𝑏𝑖 = 𝑞𝑑𝑖 (𝑝

𝑑)−𝑞𝑐𝑖 (𝑝
𝑐).

Furthermore, if for some 𝑖, 𝑗, 𝑏𝑖 > 0 and 𝑏𝑗 < 0 𝑝𝑖 + 𝑐 <
𝛼𝑝𝑗 , then it would be profitable to increase 𝑏𝑖 by some Δ𝑏𝑖
and increase 𝑏𝑗 by Δ𝑏𝑗 = 𝛼Δ𝑏𝑖. So, either 𝑝𝑐 + 𝑐 = 𝛼𝑝𝑑 and
this does not happen, or else 𝑝𝑐 + 𝑐 < 𝛼𝑝𝑑 but this change
is never feasible due to the capacity constraint. In which
case

∑
𝑖∈ℐ(𝑏𝑖)

+ = 𝑒 and
∑

𝑖∈ℐ(𝑏𝑖)
− = 𝛼𝑒. Thus, we have

that 𝑝𝑐 = 𝑝𝑐 and 𝑝𝑑 = 𝑝𝑑, and so all local maximisers of
𝑓(⋅) must be as in the statement of the theorem. However,
this precisely specifies the storage profile, and so there can
only be one local minimum of 𝑓(⋅), which is also the glocal
minimum, and is given by the statement of the theorem, as
required.
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